US009323585B2

a2 United States Patent

Tonouchi

US 9,323,585 B2
Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DEADLOCK PREVENTING APPARATUS,
DEADLOCK PREVENTING METHOD, AND
PROGRAM

(735)
(73)
")

Inventor: Toshio Tonouchi, Tokyo (JP)

Assignee: NEC Corporation, Tokyo (IP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 143 days.

14/117,283
May 8, 2012
PCT/IP2012/061716

@
(22)
(86)

Appl. No.:
PCT Filed:
PCT No.:

§371 (D),
(2), (4) Date: Now. 12, 2013

PCT Pub. No.: WO2012/153722
PCT Pub. Date: Nov. 15, 2012

87

(65) Prior Publication Data

US 2014/0250441 A1l Sep. 4, 2014

(30) Foreign Application Priority Data

May 12, 2011

(51) Int.CL
GOGF 9/46
GOGF 9/52
GOGF 11/36
USS. CL
CPC ... GOGF 9/524 (2013.01); GOGF 11/3604
(2013.01)

(000 Y 2011-107588

(2006.01)
(2006.01)
(2006.01)
(52)

Field of Classification Search

CPC .o GOGF 9/524; GOGF 11/3604

................. 718/106; 717/136-161; 714/1-57;
71/400-401; 713/400-401

See application file for complete search history.

(58)

360

(56) References Cited

U.S. PATENT DOCUMENTS

4,403,285 A * 9/1983 Kikuchi ..o 718/104

5,442,763 A 8/1995 Bartfai et al.

7,774,783 B2* 82010 Toaderc.co. 718/104
2009/0235002 Al1* 9/2009 Nir-Buchbinder et al. ... 710/240
2011/0107151 Al1* 52011 Cheetal. ... 714/38.1
2013/0042039 Al* 2/2013 Hameedetal. 710/200

FOREIGN PATENT DOCUMENTS

EP 0532333 A2 3/1993
JP H06-103091 A 4/1994
JP HO07-191944 A 7/1995
JP H11-031080 A 2/1999
(Continued)
OTHER PUBLICATIONS

Taylor, Michael Bedford, et al. “The Raw microprocessor: A com-
putational fabric for software circuits and general-purpose pro-
grams.” Micro, IEEE 22.2 (2002), pp. 25-35.*

(Continued)

Primary Examiner — Satish Rampuria
(74) Attorney, Agent, or Firm — Wilmer Cutler Pickering
Hale and Dorr LLP

(57) ABSTRACT

A deadlock preventing apparatus includes a deadlock detect-
ing section 360 configured to detect a lock command causing
a deadlock on a program code of application programs 120,
130 and an emergency processing section 180 configured to
insert a new lock command and anew unlock command to the
program code to encompass a part from a lock command
place corresponding to the lock command detected by the
deadlock detecting section 360 to an unlock command place.

7 Claims, 34 Drawing Sheets

i 17
I MEMORY
.| DEADLOCK DETECTING o cUl
SECTION 1 N
DEADLOCK DETECTION
157 VIORK AREA 165
DEADLOCK-GRAPH CREATING SECTION
153
140
™. 105
LOCK MONITOR
120 EMERGENCY
r~IPROCESSING PROGRAM
I | SECTION CODE
APPLICATION APPLICATION
PROGRAM ¢¢ | PROGRAM /
7 180 190
130
110 A 101
cru
l SHARED ™ 100

RESOURCES

US 9,323,585 B2
Page 2

(56) References Cited
FOREIGN PATENT DOCUMENTS

JP 2004-246439 A 9/2004
JP 2009-271858 A 11/2009
OTHER PUBLICATIONS

Wang, Yin, et al. “The theory of deadlock avoidance via discrete
control”” ACM SIGPLAN Notices. vol. 44. No. 1. ACM, 2009, pp.
252-263.*

Boyapati, Chandrasekhar, Robert Lee, and Martin Rinard. “Owner-
ship types for safe programming: Preventing data races and dead-
locks”” ACM SIGPLAN Notices. vol. 37. No. 11. ACM, 2002, pp.
211-230.*

International Search Report of PCT/JP2012/061716 mailed Jul. 10,
2012 (5 pages).

* cited by examiner

US 9,323,585 B2

Sheet 1 of 34

Apr. 26,2016

U.S. Patent

S30uN0SIY
00} ™ - QRIVHS u_r
1 m v
~L 0 |~ [T
b 1 | s
H ol
061 oSl ;
J J AVHOONd | g6 NY¥O0¥d
/ | W NOILYOMddV | ﬁv NOILVYOMNddV
NOILO3S ,
sw%%%mu >{ONISSID0Nd /
, AONIOUINT T
. ., - 07l
MOLINOW M00T !
S0l ™ \ - . .
N s / Y. J&/
e LT
callll yoowvr | ssasaoy o) {sesmmen
i
95¢ | v m\ %
I v ekl cé1
Ll m
49l YRV ROM L L5}
T yousai oo
NOLLO3S .
ONILO313a MooTavaa |©
P AHOWAN ~
di1 ;
09e

US 9,323,585 B2

Sheet 2 of 34

Apr. 26,2016

U.S. Patent

oL
oS00 Y001

SE D
00L ™ — a3dVHS
. Ndo _
~] _
WL T ﬁ. oLl
) (
081 08l [
J \ AVHOOUd | geq_, WVHOOUd
W NOILYOIddY drw NOILYOINddV
noioas | | - |
NS oaH—>{oNISS300ud- /
AONIONINT] {
ozl
o HOLINOW %0071 k m
50} T \ ot \\+1 i
TEHL DI
estlfl yonal
] 3
95l _ ¥
I T e |
w 3
g9 — VIO |, 18}
T rouodzoyooac]®
NOILO3S ONLLOALAA |
LHVd-MSIMO0TaVAA |
AMOWIN ~
{
09l

U.S. Patent Apr. 26,2016 Sheet 3 of 34 US 9,323,585 B2

(START)

: Y..
APPLICATION PROGRAM -
RECEIVES REQUEST | ™ Z110

APPLICATION PROGRAM
EXECUTES SERVICE . 7120

LOCK MONITOR: LOCK| ~}_ 7130

,,,,,,,,, v

APPLICATION PROGRAM |
EXECUTES SERVICE - Z140

LOCK MONITOR: UNLOCK| | 7150
v

APPLICATION PROGRAM
EXECUTES SERVICE T 7160

RESPONSE . Z170

U.S. Patent Apr. 26,2016 Sheet 4 of 34 US 9,323,585 B2

Fig. 4

L0CK MONITOR:
LOCK
OBTAIN ID OF THREAD THAT PERFORMS
LOCK REQUEST, ID OF LOCK

TARGET OBJECT, AND LOCK T A110
EXECUTING FILE NAME AND ADDRESS

DEADLOCK MANAGEMENT |
PROCESSING | | ™ A130

¥

LOCK ADDRESS
REGISTRATIONPROCESSNG| | ™ A 140

!

LOCK PROCESSING

4
(RETURN)

e A150

U.S. Patent

Apr. 26,2016 Sheet S of 34

US 9,323,585 B2

Fig. 5

LOCKNONTOR: =
DEADLOCK MANAGENENT,

i

REGISTER, IN DEADLOCK MANAGEMENT
TABLE, RELEVANT OBJECT ID, THREAD ID,
AND ENTRY ID OF LOCK ADDRESS TABLE
REPRESENTING LOCK COMMAND PLACE |

“- E110
REGISTER|~_ £130
Y
DEADLOCK GRAPH L
CREATING MEANS: LOCK - E140

4
(RETURN)

U.S. Patent Apr. 26,2016 Sheet 6 of 34 US 9,323,585 B2

Fig. 6

LO CK MONITOR: LOCK ADDRESS
REGISTRATION PROCESSING

REGISTER FILE NAME AND ADDRESS
OF LOCK OCCURRENCE PLACEIN ™ 3110
LOCK ADDRESS MANAGEMENT TABLE

U.S. Patent Apr. 26,2016 Sheet 7 of 34 US 9,323,585 B2

Fig. 7

LOCK MONITOR: LOCK ™
N\.MANAGEMENT PROCESSING

REGISTER OBJECT ID AND
THREAD ID IN RELEVANT PLACE| ™~ C120
OF LOCK MANAGEMENT TABLE

C125 ~ REGISTEREDT>—LE2

no

REGISTER OBJECT ID |
AND THREAD ID - 0127

no

yes

PUT THREAD IN
WAITING STATE |- C140

(RETURN)

U.S. Patent Apr. 26,2016 Sheet 8 of 34

/L0CK MONITOR™
(UNLOCK)
7
OBTAIN ID OF THREAD THAT

ID OF LOCK TARGET OBJECT
Y

PERFORMS LOCK REQUEST ANDI~__ 5110

DELETE RELEVANT OBJECT ID, THREAD ID,
{ AND RELEVANT ROW ID OF LOCK ADDRESS
| TABLE FROM DEADLOCK MANAGEMENT TABLE

!
{UNLOCK MANAGEMENT

}

DEADLOCK-GRAPH

US 9,323,585 B2

T B130

| PROCESSING ™ B150

CREATING MEANS: UNLOCK| | - B 160

U.S. Patent Apr. 26,2016 Sheet 9 of 34 US 9,323,585 B2

LOCK MONITOR: UNLOCK
MANAGEMENT PROCESSING /

DELETE RELEVANT OBJECT ID AND THREAD
ID FROM LOCK MANAGEMENT TABLE [~ D110

THREADS IN WAITING STATE ARE | ,,
PRESENT IN UNLOCKED OBJECTS?| - D120

RESUME ONE OF]
WAITING THREAD . D140

(RETURN)

US 9,323,585 B2

Sheet 10 of 34

Apr. 26,2016

NdN13y je

XILYW Hdv¥9 %0010v30 40 INFW3TS
OL ONIONOdSTHH0D F18V1 LNEELLY aIS
HdVd9 ¥0010v3a OL af 3ONIN0S ANV
1394V1 YO0 MIN ONY LO3rE0 L3OVL
%007 ONId303ud 40 SAI MOY F18v1 SSFHAAY
007 00v ‘T18vL SSTHAAY ¥O0T 0L ONIMHILY

NI MOY MaN 3LV34D

OFLIA @

/

L OL XIMLYIW HdY9 ¥0070v3a 40 (103rg0
1394YL X20TMIN) NWNT09 aNY (LO3rdo L394YL

¥00TONIGIOTtic) MOY Ag GALVYOIONI ININTA L3S

ST

-
. 061
m _ 103r80 Y007 MIN 340434 QV34HL INVS
MOH 40 01 IONAND3S 0zb i — | NIGIWHOZEA S L5304 00T H3HLIHM
NUNLTW ONY AL | ~ M03HO ‘TavL INIWIOYNYIN ¥D010Y3d 40
QYIHHL Hdvdo ¥o01avag) |01 3ONND3S NIv1HO 8193190 1308V Y907 40 LSIT OL ONMHIY

T

1SN0 %001 SWHO483d [VHL QI QvdHL
ANV 318v1 INFNTOVNYIN XO010v3d
NI MaNY @907 dI L9380 139VL XI0T

1

MO0 -SNVIN 02?5@
HdVHO-MO0T1avid

U.S. Patent

NI dI Av3yHL INVATTIY SFHOUVIS

01 614

U.S. Patent Apr. 26, 2016 Sheet 11 of 34 US 9,323,585 B2

Fig. 11

(CDEADLOCK GRAPH CREATING MEANS: UNLOCK

! P10

OBTAIN LOCK TARGET OBJECT ID UNLOCKED IN DEADLOCK MANAGEMENT |
TABLE AND THREAD ID THAT PERFORMS UNLOCK REQUEST

¥
P
{REFERRING TO LIST OF LOCK TARGET OBJECTS OF DEADLOCK MANAGEMENT s 102

TABLE, CHECK WHETHER OBJECT REQUESTED TO BE LOCKED IN SAME
THREAD IS PRESENT IMMEDIATELY BEFORE UNLOCK OBJECT IS LOCKED

P103 o
P104 PRESENT?
N yes

DELETE ROW OF SEQUENCE ID EQUIVALENT TO THREAD ID FROM DEADLOCK GRAPH SIDE
ATTRIBUTE TABLE CORRESPONDING TO ELEMENT INDICATED BY ROW OF DEADLOCK |
GRAPH MATRIX (PRECEDING LOCK TARGET OBJECT) AND COLUMN (UNLOCK TARGET OBJECT) |

¥
P105
DEADLOCK SIDE ATTRIBUTE TABLE IS EMPTIED? | -

. P106 “\‘@ ne
10
- yes

"|SET RELEVANT ELEMENT OF DEADLOCK GRAPH MATRIX TO 0

!
P10 LOCK TARGET OBJECT STACK OF DEADLOCK

“-IMANAGEMENT TABLE OF RELEVANT THREAD ID IS EMPTY?

»(RETURN
P110 ;
.

DELETE ROW OF RELEVANT THREAD ID OF

U.S. Patent Apr. 26, 2016 Sheet 12 of 34 US 9,323,585 B2

Fig. 12

DEADLOCK-RISK-PART DETECTING ™
. MEANS: RISK PART DETECTION

— —_— :pl

| SELECT NODE IN WHICH 1 1S SET
IN DEADLOCK GRAPH MATRIX. [~ |110

KL NODES~__ Y%
_ARE TESTED? """

No

. [JDEADLOCKRISK
1130 ™1 | DETECTION

US 9,323,585 B2

Sheet 13 of 34

Apr. 26,2016

U.S. Patent

09LF ~_

ocLr — |

NOILD313d
001av3a,,

0

-
L

OZLT | y3uv YSIM ¥0010Y3A SV XIMLYIN HdYO
~J %0070v3a INVAF13Y 40 S3dIS 40 138

'Y3uY MHOM NOILO3L3A ¥001av3aa

NI INAS3td MOY JAON ONINHZONOD

b

-

NaNL3d

Y3dv MHOM NOILO3L30 ¥00170v3d

i
—._| V34Y XHOM NOILI3L30 %2010v3d

WOY4 300N IN3S3td dOd

|
NOIL3313d

ASRI ¥001dv3d
ou

- OSLr

7031831 Y S300)

sef NOILYNLLS3A T1Y

NopLr

300N NOILYNILS3A 3NO LO313S
¥

0L JAON IN3S3¥Hd HSNd
i oul

VY YOO NOILORL30 001030
i IN3S34 S 300N JNESTY

sak oLir

@ﬁomﬁmo NS xoo.uo.q.m@

¢l B4

U.S. Patent Apr. 26, 2016 Sheet 14 of 34 US 9,323,585 B2

Fig. 14

US 9,323,585 B2

Sheet 15 of 34

Apr. 26,2016

U.S. Patent

NdN13d

|
103rgo 1394vV.L M001 dd1V3y0
0/ 1> ~— OLNIMOOTINNMOO0T LH3SNI ANV 401
~ INAE!-) v_OO._Zwm\v_OO._ 133138
J18v1 QvIEHL HY49 %001av3a 40 a1 3ININD3S
A9 G3LYOIONI XILYW HdYHO ¥0010¥30 40 INWHTE
0GIM —~J] 40300N S 40 30v1d ONVINWOI X301 0L
INTTIVAINDT MOY 30¥1d ANVIWWOD XO0TNN LIvHLX3

(31831 v ol sok

IONINOIS T ——<,_ oL

30V1d INVAT T3 NI dl 3ONIN0SS JNVS
ONIAVH 1¥Vd MSIY ¥201dv3d INO 103138

SCiX—~_] 103rd0 1394VL X001 31VIHO
ou

< JEH STV IMTI> 7

OL LY —~ | SNV3N ONILOILIA LYVd-YSIE-X00TaY3A A9 G3L03L3A
— | SLYYd YSI¥ ¥001av3 (40 ALMYENTd) 40 INO LOVHLXE

1

@% OSSO0 szw%®

Gl 614

US 9,323,585 B2

Sheet 16 of 34

Apr. 26,2016

U.S. Patent

SHO'A

LHOA
MOV1S 103rd0 1394VL M001

9} ‘614

a3x0071 |al AVIHHL

U.S. Patent Apr. 26,2016 Sheet 17 of 34 US 9,323,585 B2

Fig. 17

SEQUENCE [TOP|THREAD
: 1Dlﬂ n

DEADLOCK GRAPH
THREAD TABLE

U.S. Patent Apr. 26, 2016 Sheet 18 of 34 US 9,323,585 B2

Fig. 18

US 9,323,585 B2

Sheet 19 of 34

Apr. 26,2016

U.S. Patent

DIDOINN

AV3IHHL ONILIVM X001

AV3dHL a3diNOJV %001 | 139dV1 %001

6l DI

U.S. Patent Apr. 26, 2016 Sheet 20 of 34 US 9,323,585 B2

Fig. 20

ADDRESS@ |
LOCK

. com.nec.aC

US 9,323,585 B2

Sheet 21 of 34

Apr. 26,2016

U.S. Patent

ar £o3rao
Av3dHL ONILIVM 1001 Av3dHL a3dINDOV 001 | 13949VL X001

YR

US 9,323,585 B2

Sheet 22 of 34

Apr. 26,2016

U.S. Patent

A

"1

z¢ b4

JNILL

US 9,323,585 B2

Sheet 23 of 34

Apr. 26,2016

U.S. Patent

ONILIVM %301

L,

JNILL

US 9,323,585 B2

QGLN
;

Nyn13y

OvLN
;

4]

n 4

319VL INFWIOYNVIN QvIdHL HdYdO ¥0010vad
40 01 QY3YHL INVAT13Y 40 MOY 314130

(30N3 01 318Y.L INFWIOYNVIN QYIEHL HAVAD!
¥0070v3d 40 4 vIYHL INVATTY JONVHD

T OEIN F
IN3STHd

Sheet 24 of 34

Apr. 26,2016

U.S. Patent

S9A <DC

30N3, SY (3LYDION! 3ON3ND3S L33rd0 L30dVLI X001
WO¥4 FONIND3S 1O3rd0 13941 X001 MaN 40 1VHL
SY IS SI 81 L23rd0 1394VL X307 40 AVidY HOHW
NI ‘JONZN03S 103rd0 1394YL 007 404 SFHOUVAS

OCIN —

EALAIE 1 1 OVBRHL LNVATTRY 10 L LNEIOVNY
01030 40 XVLS %mao L30VL X001

15303 HOOTNN SWHOLH3d LYHL dI V3L
€OLN ™ ONv378vL INFWIOYNYI 00TQYIa NI

- 03400TNN a1 1O3rd0 L3OUVLI XO0TNIVLE0
2 : 180
00NN ‘SNYAIN ONLLYZXD HAv¥9¥0010v30 b7 Bl

US 9,323,585 B2

Sheet 25 of 34

Apr. 26,2016

U.S. Patent

no

a1

S30UNOSTA |-
00 ™ QIAVHS _
Ndo _
~] |
b 1 — oLl
3
g€l ogl |
] i me
d_r I
| wvaooud bed! [wvuooud
104 NOILVOIddY | 0t NOILLYDTddV
| e 5
H
- ,—. 0zl
S| Nouwoss HOLINOW 00T}
>1ONIL43ISNI 3804d \ oot | 4 .
—~ TH TGN | T8Y
- cal beivenf | oorowan || fssmioay yoor
. o ——————————————————— O " A i & " if
NOLLD3S ONLYZHD Haver YOOTQYEC dgy €5l 641
i
, ROMOM] LSHN rros
=9] wousaian oo [P s
NOILOZS ONILOALFA | _ i S—
LYVd-¥SI-4001avaa _—e
ASONEN < 80 9071
091 Gz i

U.S. Patent Apr. 26, 2016 Sheet 26 of 34 US 9,323,585 B2

Fig. 26

PROBE INSERTINGY
_ MEANS
¥

PROBE INSERTING MEANS READS
PROGRAM CODE FOR REALIZING | ™ L110
APPLICATION PROGRAM

|

PROBE INSERTING MEANS EMBEDS
PROBE IMMEDIATELY BEFORE LOCK|~_ | 1
COMMAND IN PROGRAM CODE

PROBE INSERTING MEANS
DISPOSES APPLICATION PROGRAM|
EMBEDDED WITH PROBE ~ L150

U.S. Patent Apr. 26,2016 Sheet 27 of 34 US 9,323,585 B2

Fig. 27

| ADDRESS@
| LOCK

US 9,323,585 B2

Sheet 28 of 34

Apr. 26,2016

U.S. Patent

CHO'A

JHOA

SHO"A

MOVLS 103r80 1394V.L X001

gz 614

X31H3A
=001 | dl AvidHL

U.S. Patent Apr. 26, 2016 Sheet 29 of 34 US 9,323,585 B2

Fig. 29

DEADLOCK GRAPH SIDE ATTRIBUTE TABLE

SEQUENCE src PLACE | dest PLACE
D |

SEQUENCE | TOP(THREAD:!
) ID/fi

DEADLOCK GRAPH
THREAD TABLE

U.S. Patent Apr. 26, 2016 Sheet 30 of 34 US 9,323,585 B2

Fig. 30

US 9,323,585 B2

Sheet 31 of 34

Apr. 26,2016

U.S. Patent

@ I peoe 6
le#obdwor g

¢ 1su001 1y

I peoll:g

GL# IINU G

0 peoje iy

FBFUSFOHUOUT L
umwﬂmhmwmﬁﬁg g

5011509507 ONEISSOAUT ¥
.8 ooT.. 1S# peoR 4

| Tsi0iSE 7

dnp L

0 peoe o

:(yaboy piea oyqnd

wa eI e

jsoued

AQ

(ONISSIO0YUd AONIOYIN m<

NOILNIAZHd X001av3a ¥04 3000 LHISNI ¢

Y EOAU LD

[C- R MR IR e

PR U RTI mmoz%a BBU WO

61 O greosuy Woo
pez Ok v eoau wod
LOLU# T B 00U WoD
ceOif D R0 IOY
c@ sboyg yeosuuod

U.S. Patent

Apr. 26,2016 Sheet 32 of 34

Fig. 32

US 9,323,585 B2

}
%
i
i
i

public void hoge();
0 aload_O

1. dup

2: astore_1

3: monitorenter

: aload_0

: ifnull #19

: fload_1

: iconst_2

1 if_lempge #27
10: aload_1

11 monitorexit

12 astore #str “out”
14: invokestatic #xx

o0

U.S. Patent Apr. 26, 2016 Sheet 33 of 34 US 9,323,585 B2

Fig. 33

pubfic void hoge();

0: aload_0

1 dup

. astore_1

» aload #str "LockA B

: invokestatic Lock#getl.ock
s monitorenter
Conitorenter

:aload_0

sifnull #19

:iload_1

10: iconst_2

11 if_icmpge #27

12: aload 1

13; monitorexit

14: aload #sty “LockA B”

18 invokestatic Lock#getl.ock
16: monitorexit

17: astore #sty “oul”

@ 0 N U N

%
¢
;
;
:
i 13
;
:
.

U.S. Patent Apr. 26, 2016 Sheet 34 of 34 US 9,323,585 B2

Joud - PR - d [.
+
)
¢
& %\
4
* |
X 3
¢ H
4 3
¥ <
k3 i
: : ;
. 3 ¥
: : .f’:’\ !
. 5
‘ ; ‘ :
N % 1 +
Z 4 i s
: B x
N . ! i
. » i «
. * i 3
3 3
: ; ! ;
<t ; . i .
t § .
) § +
™ : : ! :
M i . 1 »
- N % 1
- — N § .
I l M 3
M s
. .
. i
N i
N 4
. 1
N ¥
F %
-

US 9,323,585 B2

1

DEADLOCK PREVENTING APPARATUS,
DEADLOCK PREVENTING METHOD, AND
PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application of Interna-
tional Application No. PCT/JP2012/061716 entitled “Dead-
lock Preventing Apparatus, Deadlock Preventing Method,
and Program,” filed on May 8, 2012, which claims the benefit
of the priority of Japanese patent application No. 2011-
107588, filed on May 12, 2011, the disclosures of each of
which are hereby incorporated by reference in their entirety.

BACKGROUND

The present invention relates to a deadlock preventing
apparatus, a deadlock preventing method, and a program.

Examples of deadlock automatic releasing systems are
described in Patent Document 1 and Patent Document 2.
Patent Document 1: Patent Publication JP-A-7-191944
Patent Document 2: Patent Publication JP-A-2004-246439

The deadlock automatic releasing system described in
Patent Document 1 has a limit in an application program for
requesting lock. That s, to release a deadlock from a deadlock
state, the application program has to be capable of executing
processing necessary for releasing the deadlock. For
example, in Patent Document 1, respective application pro-
grams haveto acquire global lock in advance. In Patent Docu-
ment 2, when process forced stop means unlocks a process (or
a thread), the application program needs to execute rollback
processing from locking of the process until unlocking of the
process. In this way, the application program needs to be
created to be adaptable to automatic release of a deadlock.

SUMMARY

It is one of exemplary objects of the present invention to
provide a deadlock preventing apparatus, a deadlock prevent-
ing method, and a program that make it possible to avoid a
deadlock even if a function for deadlock avoidance is not
imparted to an application program.

A deadlock preventing apparatus according to the present
invention includes: a deadlock-occurrence-position detecting
section configured to detect a lock command causing a dead-
lock on a code of an application program; and an emergency
processing section configured to insert a new lock command
and a new unlock command into the program code to encom-
pass a part from a lock command place corresponding to the
lock command detected by the deadlock-occurrence-position
detecting section to an unlock command place.

According to an exemplary aspect of the present invention,
it is possible to provide a deadlock preventing apparatus, a
deadlock preventing method, and a program that can avoid a
deadlock even if a function for deadlock avoidance is not
imparted to an application program.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram showing the configuration of a
deadlock preventing apparatus according to a first embodi-
ment of the present invention.

FIG. 2 is a block diagram showing the configuration of a
deadlock preventing apparatus according to a second embodi-
ment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a flowchart for explaining the operation of a
deadlock preventing apparatus according to the embodiment
of the present invention.

FIG. 4 is a flowchart of lock request processing of a lock
monitor according to the embodiment of the present inven-
tion.

FIG. 5 is a flowchart of deadlock management processing
of the lock monitor according to the embodiment of the
present invention.

FIG. 6 is a flowchart of deadlock address registration pro-
cessing of the lock monitor according to the embodiment of
the present invention.

FIG. 7 is a flowchart of lock management processing of the
lock monitor according to the embodiment of the present
invention.

FIG. 8 is a flowchart of unlock processing of the lock
monitor according to the embodiment of the present inven-
tion.

FIG. 9 is a flowchart of unlock management processing of
the lock monitor according to the embodiment of the present
invention.

FIG. 10 is a flowchart of lock processing of a deadlock
graph creating section according to the embodiment of the
present invention.

FIG. 11 is a flowchart of unlock processing of the deadlock
graph creating section according to the first embodiment of
the present invention.

FIG. 12 is a flowchart of risk part detection processing of a
deadlock-risk-part detecting section according to the embodi-
ment of the present invention.

FIG. 13 is a flowchart of deadlock risk detection processing
of the deadlock-risk-part detecting section according to the
embodiment of the present invention.

FIG. 14 is a diagram showing a deadlock detection work
area according to the embodiment of the present invention.

FIG. 15 is a flowchart of the operation of an emergency
processing section according to the embodiment of the
present invention.

FIG. 16 is a diagram showing a deadlock management
table according to the embodiment of the present invention.

FIG. 17 is a diagram showing a deadlock graph matrix
according to the embodiment of the present invention.

FIG. 18 is a diagram showing an example of a deadlock
graph according to an example of the present invention.

FIG. 19 is a diagram showing a lock management table
according to the embodiment of the present invention.

FIG. 20 is a diagram showing a lock address table accord-
ing to the embodiment of the present invention.

FIG. 21 is a diagram showing a lock management table
according to the embodiment of the present invention.

FIG. 22 is a diagram showing a time sequence of lock and
unlock command issuance according to the embodiment of
the present invention.

FIG. 23 is a diagram showing a time sequence of lock and
unlock command issuance according to the embodiment of
the present invention.

FIG. 24 is a flowchart of unlock processing of a deadlock
graph creating section according the second embodiment of
the present invention.

FIG. 25 is a block diagram showing the configuration of a
deadlock preventing apparatus according to a third embodi-
ment of the present invention.

FIG. 26 is a flowchart of the operation of the deadlock
preventing apparatus according to the third embodiment of
the present invention.

FIG. 27 is a diagram showing an example of a lock address
table according to an example of the present invention.

US 9,323,585 B2

3

FIG. 28 is a diagram showing a state of a deadlock man-
agement table according to the example of the present inven-
tion.

FIG. 29 is a diagram showing an example of a deadlock
graph matrix according to the example of the present inven-
tion.

FIG. 30 is a diagram showing an example of a deadlock
graph according to the example of the present invention.

FIG. 31 is a diagram showing a display example of a GUI
according to the embodiment of the present invention.

FIG. 32 is a diagram showing a program code before emer-
gency processing application according to the example of the
present invention.

FIG. 33 is a diagram showing a program code after emer-
gency processing application according to the example of the
present invention.

FIG. 34 is a diagram showing a time sequence of lock and
unlock command issuance according to the example of the
present invention.

EXEMPLARY EMBODIMENT
First Embodiment

Modes for carrying out the present invention are explained
in detail below with reference to the drawings.

FIG. 1 is a block diagram showing the configuration of a
deadlock preventing apparatus according to a first embodi-
ment of the present invention. As shown in the figure, the
deadlock preventing apparatus according to the first embodi-
ment of the present invention includes a singularity or a
plurality of CPUs 100 and 101 configured to operate accord-
ing to program control, a plurality of application programs
120 and 130, shared resources 110 accessed by the plurality
of application programs 120 and 130, a lock monitor 140
configured to control the order of access to the shared
resources 110, a log DB 150 for recording a state of lock
managed by the lock monitor 140, a deadlock detecting sec-
tion (a deadlock-occurrence-position detecting section) 360
configured to detect a deadlock place on the bass of informa-
tion recorded in the log DB 150, a GUI 170 for informing an
administrator of an occurrence situation of a deadlock, a
program code 190 of the application programs 120 and 130,
an emergency processing section 180 configured to embed a
code for preventing a deadlock in the program code 190 of the
application programs 120 and 130 concerning a place desig-
nated and approved by the administrator via the GUI 170
among detected deadlock risk parts, and a memory 105 con-
figured to store programs for the lock monitor 140, the dead-
lock detecting section 360, and the like.

Inthelog DB 150, a lock management table 155 indicating
a lock acquisition situation, a deadlock management table
153, a deadlock graph matrix 157, which is a work area for
detecting a deadlock, and a lock address table 159 for record-
ing an occurrence place of a lock request on an application
program are stored. In the memory 105, a deadlock-graph
creating section 356 configured to generate a deadlock graph
matrix 157 from the deadlock management table 153 is
stored.

The lock management table 155 is, for example, as shown
in FIG. 19, a table for managing IDs of threads, which per-
form lock requests, as a linear list with a lock target object ID
set as a key. A thread corresponding to a thread 1D registered
first among the thread IDs on the linear list is a thread that
acquires lock with respect to the lock target object. The other
threads on the linear list are lock waiting threads.

10

15

20

25

30

35

40

45

50

55

60

65

4

The lock address table 159 is, for example, as shown in
FIG. 20, atable for recording a row 1D (#) and a file name and
an address, which are lock command places on the program
code 190.

The deadlock management table 153 is configured by, for
example, as shown in FIG. 16, a deadlock management table
main body and a lock target object stack. A main body of the
deadlock management table 153 is a table for managing the
lock target object stack with an ID of a thread, which performs
a lock request, set as a key. The lock target object stack is a
stack for retaining a set of an ID of a lock target object, for
which the thread issues alock request, and a row ID indicating
a lock command place recorded in the lock address table 159.

The deadlock graph matrix 157 is configured by, for
example, as shown in FIG. 17, a deadlock graph matrix main
body, a deadlock graph thread table, and a deadlock graph
side attribute table present for each matrix element of the
deadlock graph matrix main body. The deadlock graph matrix
157 shown in FIG. 17 has a value same as a value of a
deadlock graph shown in FIG. 18. The deadlock graph matrix
main body indicates a history of a plurality of lock requests
performed by the same thread. For example, when a thread T
requests lock of V,, and requests lock of V, before unlocking
V,, an element of a row V,, and a column V, of the deadlock
graph matrix is 1.

The deadlock graph thread table is a table for managing,
with a sequence ID, which is an ID given to each row, setas a
key, when the same thread acquires a plurality of times of
lock, a top pointer to a matrix element of the deadlock graph
matrix main body indicating a top of the lock and an ID of a
thread currently requesting lock. However, when the thread
unlocks all locked objects, a value of a column of “thread 1D
is rewritten from the thread ID to “ended”.

The deadlock graph side attribute table is a table for man-
aging, with the sequence ID of the deadlock graph thread
table set as a key, a row ID of a lock address table in which a
lock request place of an object “src” requested by a thread to
be locked earlier is recorded and a row ID of the lock address
table in which a lock request place of an object “dest”
requested to be locked by the thread next is recorded.

For example, a case in which the thread T is recorded in a
sequence ID 1 of the deadlock graph thread table and per-
forms a lock request of V| to V; is explained as an example.
When a row ID of the lock address table 159 in which the lock
request place where the lock quest to V| is issued is recorded
is represented as #2 and a row ID of the lock address table 159
in which a lock request place where a lock request to V; is
issued is recorded is represented as #6, a row {sequence
ID=1, src=#2, dest=#6} is recorded in the deadlock graph
side attribute table corresponding to a matrix element of (V,
V).

A deadlock detection work area 165 is, as shown in FIG.
14, a stack for storing a lock target object.

The operation of the deadlock preventing apparatus is
explained below.

The application programs 120 and 130 are programs for
providing a system user with a service. In this embodiment,
the application programs 120 and 130 are deadlock detection
target programs. Note that, in the application programs, a
plurality of threads operate in parallel.

The lock monitor 140 receives lock requests from the
application programs 120 and 130. When accessing the
shared resources 110, the application programs 120 and 130
request lock in order to avoid a situation in which consistency
cannot be maintained due to the influence from the other
applications. The lock monitor 140 receives the requests and
records the lock requests in the lock management table 155,

US 9,323,585 B2

5

the deadlock management table 153, and the lock address
table 159. Further, according to a situation, the lock monitor
140 permits the lock or puts a thread, which requests the lock,
in a waiting state.

The deadlock-graph creating section 356 reads a state of
lock recorded in the deadlock management table 153 and
records a history of lock requests in the deadlock graph matrix
157. The deadlock graph matrix 157 is a work area for detect-
ing a risk of a deadlock.

The deadlock detecting section 360 detects a closed graph
on the deadlock graph referring to the deadlock graph matrix
157 to detect a deadlock part and displays the deadlock part
on the GUI 170.

The emergency processing section 180 reads the program
code 190, rewrites a program part equivalent to a place where
a deadlock detected by the deadlock detecting section 360
occurs, and replaces the application programs 120 and 130.

The operation of the deadlock preventing apparatus
according to this embodiment is explained in detail below
with reference to FIG. 3.

First, the application program 120 receives a request for
processing execution (step Z110).

Subsequently, the application program 120 executes a ser-
vice in response to the request (step Z120).

During the execution of the application program, if it is
necessary to access the shared resources 110, the application
program 120 requests the lock monitor 140 to give lock (step
7130).

Upon acquiring the lock, the application program 120
executes the service (step 7140).

When the shared resources 110 become unnecessary, the
application program 120 notifies the lock monitor 140 of
unlock (step Z150).

The application program 120 continues to execute the ser-
vice (step Z160).

When a sequence of processing is completed, the applica-
tion program 120 returns a response (step Z170). Further,
returning to step Z110, the application program 120 receives
a request.

Lock request processing of the lock monitor 140 is
explained in detail below with reference to FIG. 4.

First, the lock monitor 140 acquires an ID of a thread that
performs alock request, an ID of a lock target object, and a file
name and an address (e.g., a row number) in a file in which a
lock command is executed (step A120). Note that, in the
following explanation, the file name and the address (e.g., the
row number) in the file in which the lock command is
executed are referred to as lock command place.

Subsequently, the lock monitor 140 performs, in order to
detect arisk of a deadlock, deadlock management processing
for recording lock information in the deadlock management
table 153 (step A130). Subsequently, the lock monitor 140
performs lock address registration processing for recording a
place where a lock command is generated (step A140).

Subsequently, the lock monitor 140 performs lock man-
agement processing for recording the lock information in the
lock management table 155 (step A150).

Deadlock management processing of the lock monitor 140
is explained below with reference to FIG. 5. This processing
is started from the lock request processing (step A130) of the
lock monitor 140.

First, the deadlock monitor 140 registers, in the deadlock
management table 153, three sets of data, i.e., an object ID, a
thread ID, a relevant row ID of the lock address table 159 in
which a lock command place is recorded (step E110). How-
ever, ifthe relevant row is already registered, the lock monitor
140 ends the processing without registering the ID (step

20

25

30

35

40

45

55

6

E120). For example, in the case of a language for not per-
forming lock (in the case of java (registered trademark), syn-
chronized) from the same thread to the same lock target object
like java (registered trademark), step E120 is necessary. The
same applies to steps C125 and step G120 explained below.

If the relevant row is not registered yet in step E120, the
lock monitor 140 registers, in the deadlock management table
153, a lock target object ID, a thread 1D, and an entry ID of a
relevant row of the lock address table 159 in which the lock
request place is registered (step E130). That is, the lock moni-
tor 140 pushes and records a set of the lock target object ID
and the relevant row ID of the lock address table 159 in a lock
target object stack present in an entry of the relevant thread ID
of the lock management table 153.

Further, the deadlock-graph creating section 356 records
the relevant object ID and the registered lock target object ID
in the deadlock graph matrix 157 (step E140).

Deadlock address registration processing of the lock moni-
tor 140 is explained below with reference to FIG. 6. This
processing is started from the lock request processing of the
lock monitor 140 explained above.

First, the lock monitor 140 registers a lock command place,
i.e., a file name and an address of a lock occurrence place in
the deadlock management table 153 (step G110). If an entry
same as the file name and the address of the relevant lock
occurrence place is already registered in the lock address
management table 153, the lock monitor 140 does not per-
form redundant registration (step G120).

If the entry is not registered yet in step (G120, the lock
monitor 140 records the lock command place, i.e., the file
name and the address of the lock occurrence place in the lock
address management table 153 (step G130). Thereafter, the
lock monitor 140 returns to the original processing.

Lock management processing of the lock monitor 140 is
explained below with reference to FIG. 7. This processing is
started from the lock request processing (step A150) of the
lock monitor 140 explained above.

First, the lock monitor 140 registers, in a relevant place of
the lock management table 155, an ID of a lock target object
and an ID of'a thread that performs a lock request (step C120).
Note that, if the same object ID and the same thread ID are
already registered in the relevant place of the lock manage-
ment table 155, the lock monitor 140 ends this processing and
returns to the original processing (step C125). This step is
necessary in the case of a programming language having a
characteristic of not performing lock (synchronized) from the
same thread to the same lock target object like java (registered
trademark). However, in the case of a program language that
takes another kind of lock even when a lock request is already
performed with the same object ID and the same thread 1D,
the lock monitor 140 proceeds to step C127 without perform-
ing the condition determination processing in step C125.

The lock monitor 140 registers the lock target object ID and
the thread ID in the lock management table 155 (step C127).
That is, the lock monitor 140 adds the relevant thread ID to the
tail end of a linear list of the relevant lock target object ID of
the lock management table 155 shown in FIG. 21.

In the lock management table 155, a thread at the top of
respective linear lists is a thread that acquires lock and the
following threads are threads in a lock waiting state.

Subsequently, the lock monitor 140 determines, referring
to the lock management table 155, whether another thread
already has lock with respect to the lock target object ID (step
C130). If another thread already has lock (yes), the lock
monitor 140 puts the thread in a waiting state (step C140). The
processing is kept stopped for the thread put in the waiting
state unless the other thread unlocks the shared resources 110.

US 9,323,585 B2

7

If another thread does not have lock in step C130, the lock
monitor 140 changes to a lock acquired state and returns to the
original processing.

Unlock processing of the lock monitor 140 is explained
below with reference to FIG. 8. This processing is started
from step Z150 of FIG. 3 explained above.

First, the lock monitor 140 acquires an ID of a thread that
performs a lock request and an ID of a lock target object (step
B110).

Subsequently, the lock monitor 140 removes the thread ID
from a row of the ID of the relevant lock target object of the
deadlock management table 153 (step B130). That is, the lock
monitor 140 pops a lock target object stack included in an
entry of the relevant thread ID and removes a set of the
relevant lock target object ID and the relevant entry ID of the
lock address table from the deadlock management table 153.

Subsequently, the lock monitor 140 performs, referring to
the lock management table 155, unlock management process-
ing for performing unlock (step B150).

Subsequently, the deadlock-graph creating section 356
performs unlock processing on the basis of information con-
cerning the thread ID, the removed object ID, and the relevant
entry ID of the lock address table (step B160).

Unlock management processing of the lock monitor 140 is
explained below with reference to FIG. 9. This processing is
started from the unlock processing (step B150) of the opera-
tion of the lock monitor 140 explained above.

First, the lock monitor 140 deletes the relevant lock target
object ID and the relevant thread ID from the lock manage-
ment table 155 (step D110). That is, the lock monitor 140
deletes the thread ID from a linear list included in an entry of
the relevant object ID of the lock management table 155.

Subsequently, the lock monitor 140 checks, referring to the
lock management table 155, whether threads in a waiting
state in an unlocked object are present (step D120). If the
following waiting threads are present (step D130: yes), the
lock monitor 140 resumes one of the waiting threads and
records the thread in a lock acquisition thread of the lock
management table 155 (step D140).

That is, in steps D110 to D140, the lock monitor 140
removes the relevant ID of the thread currently acquiring lock
from the entry of the relevant lock target object ID of the lock
management table 155 and, if a thread waiting for lock with
respect to the lock target object is present, sets the thread as a
thread currently acquiring lock and starts the thread from a
waiting state.

Lock processing of the deadlock-graph creating section
356 is explained below with reference to FIG. 10. This pro-
cessing is started from step E140 configuring the deadlock
management processing of the lock monitor 140 shown in
FIG. 5.

First, the deadlock-graph creating section 356 acquires,
referring to the deadlock management table 153, an ID of a
lock target object locked anew and an ID of a thread that
performs a lock request (step M110).

Subsequently, the deadlock-graph creating section 356
checks, referring to a lock target object stack of the relevant
thread ID of the deadlock management table 153, whether an
object ID same as a new lock target object is present (step
M120). If the relevant lock target object is absent (step M130:
no), the deadlock-graph creating section 356 returns to the
original processing. When the relevant lock target object is
present (step M130: yes), the deadlock-graph creating section
356 sets an element of a matrix indicated by a row of a
deadlock graph matrix (a lock target object immediately pre-
ceding the new lock target object. A row indicated by a node
1D second from the top of a lock target object stack corre-

20

30

35

40

45

55

8

sponding to the relevant thread ID) and a column (the new
lock target object. A column indicated by a node ID at the top
of'the lock target object stack corresponding to the thread ID)
(step M140).

Subsequently, the deadlock-graph creating section 356
searches for the relevant thread ID referring to the deadlock
graph thread table (step M150). When the relevant thread ID
is present (step M160: yes), the deadlock-graph creating sec-
tion 356 acquires a relevant sequence ID of the deadlock
graph thread table (step M180). When the relevant thread ID
is present (step M160: no), the deadlock-graph creating sec-
tion 356 creates a new row in the deadlock graph thread table
and returns a sequence 1D of the row (step M170).

That is, the deadlock-graph creating section 356 generates
a new sequence ID and records, in the deadlock graph thread
table, a set ofthree items, i.e., the sequence ID, an ID of a lock
request thread, and reference to a matrix element of the dead-
lock graph matrix 157, which is an element having a value set
to 1 in step M140. The deadlock-graph creating section 356
returns the sequence ID generated anew.

Subsequently, the deadlock-graph creating section 356
acquires row IDs in the lock address table 159 of a lock target
object recorded in a lock target object stack and an immedi-
ately preceding lock target object and adds, to a deadlock
graph side attribute table corresponding to the element of the
deadlock graph matrix 157 having the value set to 1 in step
M140, a set of three items, i.e., the sequence ID and the row
IDs of the preceding lock target object and the new lock target
(step M190).

The operation of the unlock processing of the deadlock-
graph creating section 356 is explained below with reference
to FIG. 11. This processing is started from step E140 config-
uring the unlock processing of the lock monitor 140 shown in
FIG. 5.

First, the deadlock-graph creating section 356 acquires an
ID of an unlocked lock target object and an ID of a thread that
performs an unlock request (step P101).

Subsequently, the deadlock-graph creating section 356
checks, referring to a list of lock target objects of the deadlock
management table 153, an object requested to be locked in the
same thread is present immediately before an unlocked object
is locked (step P102).

When an object requested to be locked in the same thread
is present (step P103: yes), the deadlock-graph creating sec-
tion 356 shifts to step P104. When an object requested to be
locked in the same thread is absent, the deadlock-graph cre-
ating section 356 shifts to step P108.

In step P104, the deadlock-graph creating section 356
deletes a row of a sequence ID equivalent to the thread ID
from a deadlock graph side attribute table corresponding to an
element indicated by a row (a preceding lock target object)
and a column (an unlock target object) of the deadlock graph
matrix 157.

Subsequently, the deadlock-graph creating section 356
determines whether the deadlock graph side attribute table is
emptied (steps P105 and P106). When the deadlock graph
side attribute table is empty, the deadlock-graph creating
section 356 proceeds to step P107. When the deadlock graph
side attribute table is not empty, the deadlock-graph creating
section 356 shifts to step P108.

In step P107, the deadlock-graph creating section 356 sets
the relevant element of the deadlock graph matrix 157 to 0.

Subsequently, the deadlock-graph creating section 356
searches for a lock target object stack corresponding to an ID
of an unlock requesting thread among lock target object
stacks of the deadlock management table 153 and checks
whether the lock target object stack is empty (step P108). If

US 9,323,585 B2

9

the lock target object stack is not empty (step P109: no), the
deadlock-graph creating section 356 returns to the original
processing. Ifthe lock target object stack is empty (step P109:
yes), the deadlock-graph creating section 356 deletes a row of
an ID of athread that requests unlock from the deadlock graph
thread management table (step P110).

Deadlock part detection processing of the deadlock detect-
ing section 360 is explained below with reference to FIG. 12.
This operation is started periodically or at appropriate timing.

First, the deadlock detecting section 360 select one matrix
element in which 1 is set in the deadlock graph matrix 157
(step 1110). When all nodes are already selected (step 1120:
yes), the deadlock detecting section 360 ends the processing.
In other cases (step 1120: no), the deadlock detecting section
360 performs deadlock risk detection processing explained
below (step 1130). Thereafter, the deadlock detecting section
360 returns to step 1110 and repeats the processing.

Deadlock detection processing of the deadlock detecting
section 360 is explained below with reference to F1G. 13. This
processing is invoked from the risk part detection processing
(step 1130) of the deadlock detecting section 360 explained
above. Alternatively, this processing is recursively invoked
from the processing. In that case, a test target row of the
deadlock graph matrix 157, 1.e., one of start nodes (lock target
objects) of a directed side configuring a graph is passed as an
argument.

First, the deadlock detecting section 360 sets the start node
as a present node. If the present node is recorded in the
deadlock detection work area 165 (step J110: yes), the dead-
lock detecting section 360 acquires a node row including a
node already stored in the deadlock detection work area 165
and up to a node stored in the deadlock detection work area
165 after the node. Further, the deadlock detecting section
360 sets a relevant place of the deadlock graph matrix 157
corresponding to the node row as a deadlock risk area (step
1170).

The processing is explained using an example shown in
FIG. 14. When it is attempted to push V, to the deadlock
detection work area anew, V, is already present in the dead-
lock detection work area. At this point, elements of (V,, V),
(V,, V3), and (V,, V,) of the deadlock graph matrix 157 are
deadlock risk parts. After step J170, the deadlock detecting
section 360 returns to the original processing.

When the present node is not recorded in the deadlock
detection work area 165 in step J110, the deadlock detecting
section 360 pushes an ID of the present node to the deadlock
detection work area (step J120).

Subsequently, the deadlock detecting section 360 selects a
column in which 1 is set among relevant rows of the present
node in the deadlock graph matrix 157 (step J130). If all
destination nodes are already tested concerning the column in
which 1 is set (step J140: yes), the deadlock detecting section
360 extracts information concerning the present node pushed
to the deadlock detection work area (step J160) and returns
from this processing to the original processing.

When an untested node is present in step J140 (no), the
deadlock detecting section 360 sets a node 1D indicated by
one of columns in which 1 is set as a present node ID and an
argument and recursively invokes the deadlock detection pro-
cessing (step J150).

The operation of the emergency processing section 180 is
explained below with reference to FIG. 15. The processing is
applied to a deadlock risk part selected by the administrator
via the GUI 170 among deadlock risk parts found by the
deadlock detecting section 360.

First, the emergency processing section 180 extracts one of
a plurality of deadlock parts detected by the deadlock detect-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

ing section 360 (step K110). The deadlock detecting section
360 extracts deadlock risk parts, for example, “(V,, V,), (V,,
V3),and (V;,V,)” and acquires, referring to a deadlock graph
matrix side attribute table of respective sides of (V,, V,) and
the like, a plurality of sets of a plurality of lock command
places referred to by a set of a sequence ID for each side and
a row 1D of the lock address table 159 for each side.

If emergency processing is already performed for all the
deadlock risk parts (step K120: yes), the emergency process-
ing section 180 returns to the original processing. When a
deadlock risk area not subjected to the emergency processing
yet is present (no), the emergency processing section 180
creates new lock target object V (step K125).

In step K110, the emergency processing section 180
extracts one out of a plurality of sequence IDs corresponding
to the acquired deadlock risk part and extracts a subset of
deadlock risk parts corresponding to the sequence ID (step
K130).

When the processing is completed for all the sequence IDs
(step K140: yes), the emergency processing section 180
returns to step K110 and applies the processing to the other
deadlock parts.

When an unprocessed sequence ID is present (step K140:
no), the emergency processing section 180 extracts a row of
the relevant sequence ID of the deadlock class thread table
and acquires, referring to the lock address table 159, a lock
command place of an src node of a row of the relevant ID in
a deadlock graph side attribute table of an element of a dead-
lock graph matrix indicated by the row. Further, the emer-
gency processing section 180 searches through the program
code 190 and acquires an unlock relevant place correspond-
ing to the lock command place (step K150).

Concerning a top lock command place and an unlock com-
mand place corresponding to the top lock command place, the
emergency processing section 180 inserts, into a relevant file,
a lock request command and an unlock command targeting
the lock target object V (step K170).

That is, the emergency processing section 180 creates a
cock command to include a lock and unlock command that
causes a deadlock. Therefore, it is possible to prevent a dead-
lock. A time sequence of lock and unlock command issuance
is shown in FIG. 22. For simplification, in FIG. 22, T,, T,,and
T unrelated to a deadlock are removed from FIG. 23 showing
an example in which the deadlock occurs. In FIG. 22, a lock
command and an unlock command for the lock target object
V are inserted into T, and T, in FIG. 23. Consequently, T,
causes T, to wait for lock and a series of operation can be
executed. Therefore, it is possible to prevent a deadlock.

Since a new lock target object V is generated separately
from an existing lock target object, a situation does not occur
in which lock with respect to the lock target object V inter-
feres with existing lock and causes a new deadlock. When the
processing in step K170 ends, the emergency processing sec-
tion 180 returns to step K140 and performs a test of the next
thread.

As explained above, according to the present embodiment,
the emergency processing section 180 rewrites the program
code 190 with respect to a deadlock place detected by the
deadlock detecting section 360 and inserts lock and unlock
for encompassing a deadlock risk part into the program code
190. Therefore, it is possible to prevent the next deadlock.

It is possible to avoid a deadlock even if a function for
deadlock avoidance is not imparted to the application pro-
grams 120 and 130. This is because the emergency processing
section 180 rewrites a deadlock risk place in the application
programs and inserts a lock command into a deadlock risk
part. The insertion of the code is performed by the emergency

US 9,323,585 B2

11

processing section 180. Therefore, it is unnecessary to rewrite
the application programs per se.

Second Embodiment

FIG. 2 is a block diagram showing the configuration of a
deadlock preventing apparatus according to a second embodi-
ment of the present invention. As shown in the figure, the
deadlock preventing apparatus according to the embodiment
of the present invention includes the singularity or the plural-
ity of CPUs 100 and 101 configured to operate according to
program control, the plurality of application programs 120
and 130, the shared resources 110 accessed by the plurality of
application programs 120 and 130, the lock monitor 140
configured to control the order of access to the shared
resources 110, the log DB 150 for recording a state of lock
managed by the lock monitor 140, a deadlock-risk-part
detecting section (a deadlock-occurrence-position detecting
section) 160 configured to detect a deadlock on the bass of
information recorded in the log DB 150, the GUI 170 for
informing an administrator of an occurrence situation of a
deadlock, the program code 190 of the application programs
120 and 130, the emergency processing section 180 config-
ured to embed a code for preventing a deadlock in the pro-
gram code 190 of the application programs 120 and 130
concerning a place designated and approved by the adminis-
trator via the GUI 170 among detected deadlock risk parts,
and the memory 105 configured to store programs for the lock
monitor 140, the deadlock-risk-part detecting section 160,
and the like.

In the log DB 150, the lock management table 155 indicat-
ing a lock acquisition situation, the deadlock management
table 153, the deadlock graph matrix 157, which is a work
area for detecting a deadlock, and the lock address table 159
for recording an occurrence place of a lock request on an
application program are stored. In the memory 105, a dead-
lock-graph creating section 156 configured to generate the
deadlock graph matrix 157 from the deadlock management
table 153 is stored.

The lock management table 155 is, for example, as shown
in FIG. 19, a table for managing IDs of threads, which per-
form lock requests, as a linear list with a lock target object ID
set as a key. A thread corresponding to a thread 1D registered
first among the thread IDs on the linear list is a thread that
acquires lock with respect to the lock target object. The other
threads on the linear list are lock waiting threads.

The lock address table 159 is, for example, as shown in
FIG. 20, atable for recording a row ID (#) and a file name and
an address, which are lock command places on the program
code 190.

The deadlock management table 153 is configured by, for
example, as shown in FIG. 16, a deadlock management table
main body and a lock target object stack. A main body of the
deadlock management table 153 is a table for managing the
lock target object stack with an ID of a thread, which performs
a lock request, set as a key. The lock target object stack is a
stack for retaining a set of an ID of a lock target object, for
which the thread issues alock request, and a row ID indicating
a lock command place recorded in the lock address table 159.

The deadlock graph matrix 157 is configured by, for
example, as shown in FIG. 17, a deadlock graph matrix main
body, a deadlock graph thread table, and a deadlock graph
side attribute table present for each matrix element of the
deadlock graph matrix main body. The deadlock graph matrix
157 shown in FIG. 17 has a value same as a value of a
deadlock graph shown in FIG. 18. The deadlock graph matrix
main body indicates a history of a plurality of lock requests

30

40

45

50

12

performed by the same thread. For example, when a thread T
requests lock of V,, and requests lock of V, before unlocking
V,, an element of the row V, and the column V, of the
deadlock graph matrix is 1.

The deadlock graph thread table is a table for managing,
with a sequence ID, which is an ID given to each row, setas a
key, when the same thread acquires a plurality of times of
lock, a top pointer to a matrix element of the deadlock graph
matrix main body indicating a top of the lock and an ID of a
thread currently requesting lock. However, when the thread
unlocks all locked objects, a value of a column of “thread 1D
is rewritten from the thread ID to “ended”.

The deadlock graph side attribute table is a table for man-
aging, with the sequence ID of the deadlock graph thread
table set as a key, a row ID of a lock address table in which a
lock request place of an object “src” requested by a thread to
be locked earlier is recorded and a row ID of the lock address
table in which a lock request place of an object “dest”
requested to be locked by the thread next is recorded.

For example, a case in which the thread T is recorded in the
sequence ID 1 of the deadlock graph thread table and per-
forms a lock request of V| to V; is explained as an example.
When a row ID of the lock address table 159 in which the lock
request place where the lock quest to V| is issued is recorded
is represented as #2 and a row ID of the lock address table 159
in which a lock request place where a lock request to V; is
issued is recorded is represented as #6, a row {sequence
ID=1, src=#2, dest=#6} is recorded in the deadlock graph
side attribute table corresponding to a matrix element of (V,
V).

The deadlock detection work area 165 is, as shown in FIG.
14, a stack for storing a lock target object.

The operation of the deadlock preventing apparatus is
explained below.

The application programs 120 and 130 are programs for
providing a system user with a service. In this embodiment,
the application programs 120 and 130 are deadlock detection
target programs. Note that, in the application programs, a
plurality of threads operate in parallel.

The lock monitor 140 receives lock requests from the
application programs 120 and 130. When accessing the
shared resources 110, the application programs 120 and 130
request lock in order to avoid a situation in which consistency
cannot be maintained due to the influence from the other
applications. The lock monitor 140 receives the requests and
records the lock requests in the lock management table 155,
the deadlock management table 153, and the lock address
table 159. Further, according to a situation, the lock monitor
140 permits the lock or puts a thread, which requests the lock,
in a waiting state.

The deadlock-graph creating section 156 reads a state of
lock recorded in the deadlock management table 153 and
records a history of lock requests in the deadlock graph matrix
157. The deadlock graph matrix 157 is a work area for detect-
ing a risk of a deadlock.

The deadlock-risk-part detecting section 160 detects a
closed graph on the deadlock graph referring to the deadlock
graph matrix 157 to detect a deadlock risk part and displays
the deadlock risk part on the GUI 170.

The emergency processing section 180 reads the program
code 190, rewrites a program part equivalent to a risk place
where a deadlock detected by the deadlock-risk-part detect-
ing section 160 occurs, and replaces the application programs
120 and 130.

The operation of the deadlock preventing apparatus
according to this embodiment is explained in detail below
with reference to FIG. 3.

US 9,323,585 B2

13

First, the application program 120 receives a request for
processing execution (step Z110).

Subsequently, the application program 120 executes a ser-
vice in response to the request (step Z120).

During the execution of the application program, if it is
necessary to access the shared resources 110, the application
program 120 requests the lock monitor 140 to give lock (step
7130).

Upon acquiring the lock, the application program 120
executes the service (step 7140).

When the shared resources 110 become unnecessary, the
application program 120 notifies the lock monitor 140 of
unlock (step Z150).

The application program 120 continues to execute the ser-
vice (step Z160).

When a sequence of processing is completed, the applica-
tion program 120 returns a response (step Z170). Further,
returning to step Z110, the application program 120 receives
a request.

Lock request processing of the lock monitor 140 is
explained in detail below with reference to FIG. 4.

First, the lock monitor 140 acquires an ID of a thread that
performs alock request, an ID of a lock target object, and a file
name and an address (e.g., a row number) in a file in which a
lock command is executed (step A120). Note that, in the
following explanation, the file name and the address (e.g., the
row number) in the file in which the lock command is
executed are referred to as lock command place.

Subsequently, the lock monitor 140 performs, in order to
detect arisk of a deadlock, deadlock management processing
for recording lock information in the deadlock management
table 153 (step A130). Subsequently, the lock monitor 140
performs lock address registration processing for recording a
place where a lock command is generated (step A140).

Subsequently, the lock monitor 140 performs lock man-
agement processing for recording the lock information in the
lock management table 155 (step A150).

Deadlock management processing of the lock monitor 140
is explained below with reference to FIG. 5. This processing
is started from the lock request processing (step A130) of the
lock monitor 140.

First, the deadlock monitor 140 registers, in the deadlock
management table 153, three sets of data, i.e., an object ID, a
thread ID, a relevant row ID of the lock address table 159 in
which a lock command place is recorded (step E110). How-
ever, ifthe relevant row is already registered, the lock monitor
140 ends the processing without registering the ID (step
E120). For example, in the case of a language for not per-
forming lock (in the case of java (registered trademark), syn-
chronized) from the same thread to the same lock target object
like java (registered trademark), step E120 is necessary. The
same applies to steps C125 and step G120 explained below.

If the relevant row is not registered yet in step E120, the
lock monitor 140 registers, in the deadlock management table
153, a lock target object ID, a thread 1D, and an entry ID of a
relevant row of the lock address table 159 in which the lock
request place is registered (step E130). That s, the lock moni-
tor 140 pushes and records a set of the lock target object ID
and the relevant row ID of the lock address table 159 in a lock
target object stack present in an entry of the relevant thread ID
of the lock management table 153.

Further, the deadlock-graph creating section 156 records
the relevant object ID and the registered lock target object ID
in the deadlock graph matrix 157 (step E140).

Deadlock address registration processing of the lock moni-
tor 140 is explained below with reference to FIG. 6. This

10

20

25

30

35

40

45

50

65

14

processing is started from the lock request processing of the
lock monitor 140 explained above.

First, the lock monitor 140 registers a lock command place,
i.e., a file name and an address of a lock occurrence place in
the deadlock management table 153 (step G110). If an entry
same as the file name and the address of the relevant lock
occurrence place is already registered in the lock address
management table 153, the lock monitor 140 does not per-
form redundant registration (step G120).

If the entry is not registered yet in step (G120, the lock
monitor 140 records the lock command place, i.e., the file
name and the address of the lock occurrence place in the lock
address management table 153 (step G130). Thereafter, the
lock monitor 140 returns to the original processing.

Lock management processing of the lock monitor 140 is
explained below with reference to FIG. 7. This processing is
started from the lock request processing (step A150) of the
lock monitor 140 explained above.

First, the lock monitor 140 registers, in a relevant place of
the lock management table 155, an ID of a lock target object
and an ID of'a thread that performs a lock request (step C120).
Note that, if the same object ID and the same thread ID are
already registered in the relevant place of the lock manage-
ment table 155, the lock monitor 140 ends this processing and
returns to the original processing (step C125). This step is
necessary in the case of a programming language having a
characteristic of not performing lock (synchronized) from the
same thread to the same lock target object like java (registered
trademark). However, in the case of a program language that
takes another kind of lock even when a lock request is already
performed with the same object ID and the same thread 1D,
the lock monitor 140 proceeds to step C127 without perform-
ing the condition determination processing in step C125.

The lock monitor 140 registers the lock target object ID and
the thread ID in the lock management table 155 (step C127).
That is, the lock monitor 140 adds the relevant thread ID to the
tail end of a linear list of the relevant lock target object ID of
the lock management table 155 shown in FIG. 21.

In the lock management table 155, a thread at the top of
respective linear lists is a thread that acquires lock and the
following threads are threads in a lock waiting state.

Subsequently, the lock monitor 140 determines, referring
to the lock management table 155, whether another thread
already has lock with respect to the lock target object ID (step
C130). If another thread already has lock (yes), the lock
monitor 140 puts the thread in a waiting state (step C140). The
processing is kept stopped for the thread put in the waiting
state unless the other thread unlocks the shared resources 110.
If another thread does not have lock in step C130, the lock
monitor 140 changes to a lock acquired state and returns to the
original processing.

Unlock processing of the lock monitor 140 is explained
below with reference to FIG. 8. This processing is started
from step Z150 of FIG. 3 explained above.

First, the lock monitor 140 acquires an ID of a thread that
performs a lock request and an ID of a lock target object (step
B110).

Subsequently, the lock monitor 140 removes the thread ID
from a row of the ID of the relevant lock target object of the
deadlock management table 153 (step B130). That is, the lock
monitor 140 pops a lock target object stack included in an
entry of the relevant thread ID and removes a set of the
relevant lock target object ID and the relevant entry ID of the
lock address table from the deadlock management table 153.

Subsequently, the lock monitor 140 performs, referring to
the lock management table 155, unlock management process-
ing for performing unlock (step B150).

US 9,323,585 B2

15

Subsequently, the deadlock-graph creating section 156
performs unlock processing on the basis of information con-
cerning the thread ID, the removed object ID, and the relevant
entry ID of the lock address table (step B160).

Unlock management processing of the lock monitor 140 is
explained below with reference to FIG. 9. This processing is
started from the unlock processing (step B150) of the opera-
tion of the lock monitor 140 explained above.

First, the lock monitor 140 deletes the relevant lock target
object ID and the relevant thread ID from the lock manage-
ment table 155 (step D110). That is, the lock monitor 140
deletes the thread ID from a linear list included in an entry of
the relevant object ID of the lock management table 155.

Subsequently, the lock monitor 140 checks, referring to the
lock management table 155, whether threads in a waiting
state in an unlocked object are present (step D120). If the
following waiting threads are present (step D130: yes), the
lock monitor 140 resumes one of the waiting threads and
records the thread in a lock acquisition thread of the lock
management table 155 (step D140).

That is, in steps D110 to D140, the lock monitor 140
removes the relevant ID of the thread currently acquiring lock
from the entry of the relevant lock target object ID of the lock
management table 155 and, if a thread waiting for lock with
respect to the lock target object is present, sets the thread as a
thread currently acquiring lock and starts the thread from a
waiting state.

Lock processing of the deadlock-graph creating section
156 is explained below with reference to FIG. 10. This pro-
cessing is started from step E140 configuring the deadlock
management processing of the lock monitor 140 shown in
FIG. 5.

First, the deadlock-graph creating section 156 acquires,
referring to the deadlock management table 153, an ID of a
lock target object locked anew and an ID of a thread that
performs a lock request (step M110).

Subsequently, the deadlock-graph creating section 156
checks, referring to a lock target object stack of the relevant
thread ID of the deadlock management table 153, whether an
object ID same as a new lock target object is present (step
M120). If the relevant lock target object is absent (step M130:
no), the deadlock-graph creating section 156 returns to the
original processing. When the relevant lock target object is
present (step M130: yes), the deadlock-graph creating section
156 sets an element of a matrix indicated by a row of a
deadlock graph matrix (a lock target object immediately pre-
ceding the new lock target object. A row indicated by a node
1D second from the top of a lock target object stack corre-
sponding to the relevant thread 1D) and a column (the new
lock target object. A column indicated by a node ID at the top
of'the lock target object stack corresponding to the thread ID)
(step M140).

Subsequently, the deadlock-graph creating section 156
searches for the relevant thread ID referring to the deadlock
graph thread table (step M150). When the relevant thread ID
is present (step M160: yes), the deadlock-graph creating sec-
tion 156 acquires a relevant sequence ID of the deadlock
graph thread table (step M180). When the relevant thread ID
is present (step M160: no), the deadlock-graph creating sec-
tion 156 creates a new row in the deadlock graph thread table
and returns a sequence 1D of the row (step M170).

That is, the deadlock-graph creating section 156 generates
a new sequence ID and records, in the deadlock graph thread
table, a setofthree items, i.e., the sequence ID, an ID of a lock
request thread, and reference to a matrix element of the dead-
lock graph matrix 157, which is an element having a value set

35

40

45

16

to 1 in step M140. The deadlock-graph creating section 156
returns the sequence ID generated anew.

Subsequently, the deadlock-graph creating section 156
acquires row IDs in the lock address table 159 of a lock target
object recorded in a lock target object stack and an immedi-
ately preceding lock target object and adds, to a deadlock
graph side attribute table corresponding to the element of the
deadlock graph matrix 157 having the value set to 1 in step
M140, a set of three items, i.e., the sequence ID and the row
IDs of the preceding lock target object and the new lock target
(step M190).

The operation of the unlock processing of the deadlock-
graph creating section 156 is explained below with reference
to FIG. 24. This processing is started from step E140 config-
uring the unlock processing of the lock monitor 140 shown in
FIG. 5.

First, the deadlock-graph creating section 156 acquires an
ID of an unlocked lock target object and an ID of a thread that
performs an unlock request (step N103).

Subsequently, the deadlock-graph creating section 156
searches through a lock target object stack corresponding to
the ID of the unlock requesting thread among the lock target
object stacks of the deadlock management table 153 and
checks whether the lock target object stack is empty (step
N110). If the lock target object is not empty (step N115: no),
the deadlock-graph creating section 156 returns to the origi-
nal processing. If the lock target object stack is empty (step
N115: yes), the deadlock-graph creating section 156 searches
through the deadlock graph thread management table and the
deadlock graph matrix 157 and acquires a sequence of lock
target objects acquired by the ID of the thread that requests
the unlock command.

The sequence of IDs of the lock target objects is referred to
as new lock target object sequence. The deadlock-graph cre-
ating section 156 searches for a lock target object sequence, in
which an array of lock target object IDs is the same as that of
a new lock target object sequence, from lock target object
sequence indicated as “ended” in a column of a thread ID in
the deadlock graph matrix 157 (step N120).

If the relevant lock target object sequence is present (step
N130: yes), the deadlock-graph creating section 156 deletes a
row of the ID of the thread that performs the unlock request
from the deadlock graph thread management table (step
N150). If the relevant lock target object sequence is absent
(step N130: no), the deadlock-graph creating section 156
changes the relevant thread ID of the deadlock graph thread
management table to “ended” (step N140).

Risk part detection processing of the deadlock-risk-part
detecting section 160 is explained below with reference to
FIG. 12. This operation is started periodically or at appropri-
ate timing.

First, the deadlock-risk-part detecting section 160 select
one matrix element in which 1 is set in the deadlock graph
matrix 157 (step 1110). When all nodes are already selected
(step 1120: yes), the deadlock-risk-part detecting section 160
ends the processing. In other cases (step 1120: no), the dead-
lock-risk-part detecting section 160 performs deadlock risk
detection processing explained below (step 1130). Thereat-
ter, the deadlock-risk-part detecting section 160 returns to
step 1110 and repeats the processing.

Deadlock risk detection processing of the deadlock-risk-
part detecting section 160 is explained below with reference
to FIG. 13. This processing is invoked from the risk part
detection processing (step 1130) of the deadlock-risk-part
detecting section 160 explained above. Alternatively, this
processing is recursively invoked from the processing. In that
case, a test target row of the deadlock graph matrix 157, i.e.,

US 9,323,585 B2

17

one of start nodes (lock target objects) of a directed side
configuring a graph is passed as an argument.

First, the deadlock-risk-part detecting section 160 sets the
start node as a present node. If the present node is recorded in
the deadlock detection work area 165 (step J110: yes), the
deadlock-risk-part detecting section 160 acquires a node row
including a node already stored in the deadlock detection
work area 165 and up to a node stored in the deadlock detec-
tion work area 165 after the node. Further, the deadlock-risk-
part detecting section 160 sets a relevant place of the deadlock
graph matrix 157 corresponding to the node row as a deadlock
risk area (step J170).

The processing is explained using an example shown in
FIG. 14. When it is attempted to push V, to the deadlock
detection work area anew, V, is already present in the dead-
lock detection work area. At this point, elements of (V,, V),
(V,, V3), and (V,, V,) of the deadlock graph matrix 157 are
deadlock risk parts. After step J170, the deadlock-risk-part
detecting section 160 returns to the original processing.

When the present node is not recorded in the deadlock
detection work area 165 in step J110, the deadlock-risk-part
detecting section 160 pushes an ID of the present node to the
deadlock detection work area (step J120).

Subsequently, the deadlock-risk-part detecting section 160
selects a column in which 1 is set among relevant rows of the
present node in the deadlock graph matrix 157 (step J130). If
all destination nodes are already tested concerning the col-
umn in which 1 is set (step J140: yes), the deadlock-risk-part
detecting section 160 extracts information concerning the
present node pushed to the deadlock detection work area (step
J160) and returns from this processing to the original process-
ing.

When an untested node is present in step J140 (no), the
deadlock-risk-part detecting section 160 sets a node 1D indi-
cated by one of columns in which 1 is set as a present node ID
and an argument and recursively invokes the deadlock risk
detection processing (step J150).

The operation of the emergency processing section 180 is
explained below with reference to FIG. 15. The processing is
applied to a deadlock risk part selected by the administrator
via the GUI 170 among deadlock risk parts found by the
deadlock-risk-part detecting section 160.

First, the emergency processing section 180 extracts one of
a plurality of deadlock risk parts detected by the deadlock-
risk-part detecting section 160 (step K110). The deadlock-
risk-part detecting section 160 extracts deadlock risk parts,
for example, “(V,, V,), (V,,V;),and (V;,V,)” and acquires,
referring to a deadlock graph matrix side attribute table of
respective sides of (V,,, V) and the like, a plurality of sets of
a plurality of lock command places referred to by a set of a
sequence ID for each side and a row ID of the lock address
table 159 for each side.

If emergency processing is already performed for all the
deadlock risk parts (step K120: yes), the emergency process-
ing section 180 returns to the original processing. When a
deadlock risk area not subjected to the emergency processing
yet is present (no), the emergency processing section 180
creates new lock target object V (step K125).

In step K110, the emergency processing section 180
extracts one out of a plurality of sequence IDs corresponding
to the acquired deadlock risk part and extracts a subset of
deadlock risk parts corresponding to the sequence ID (step
K130).

When the processing is completed for all the sequence IDs
(step K140: yes), the emergency processing section 180
returns to step K110 and applies the processing to the other
deadlock risk parts.

10

15

20

25

30

35

40

45

50

55

60

65

18

When an unprocessed sequence ID is present (step K140:
no), the emergency processing section 180 extracts a row of
the relevant sequence ID of the deadlock class thread table
and acquires, referring to the lock address table 159, a lock
command place of an src node of a row of the relevant ID in
a deadlock graph side attribute table of an element of a dead-
lock graph matrix indicated by the row. Further, the emer-
gency processing section 180 searches through the program
code 190 and acquires an unlock relevant place correspond-
ing to the lock command place (step K150).

Concerning a top lock command place and an unlock com-
mand place corresponding to the top lock command place, the
emergency processing section 180 inserts, into a relevant file,
a lock request command and an unlock command targeting
the lock target object V (step K170).

That is, the emergency processing section 180 creates a
cock command to include a lock and unlock command that is
likely to cause a deadlock. Therefore, it is possible to prevent
a deadlock. A time sequence of lock and unlock command
issuance is shown in FIG. 22. For simplification, in FIG. 22,
T,, T;, and T unrelated to a deadlock are removed from FIG.
23 showing an example in which the deadlock occurs. In FIG.
22, a lock command and an unlock command for the lock
target object V are inserted into T, and T, in FIG. 23. Conse-
quently, T, causes T, to wait for lock and a series of operation
can be executed. Therefore, it is possible to prevent a dead-
lock.

Since a new lock target object V is generated separately
from an existing lock target object, a situation does not occur
in which lock with respect to the lock target object V inter-
feres with existing lock and causes a new deadlock. When the
processing in step K170 ends, the emergency processing sec-
tion 180 returns to step K140 and performs a test of the next
thread.

In the first embodiment, even if a risk part in which a
deadlock occurs is present in a program, the risk part cannot
be detected unless a deadlock actually occurs. However,
when a deadlock actually occurs, a situation sometimes
occurs in which a system cannot provide a service, it is
desirable to predict occurrence of a deadlock beforehand.
According to the second embodiment, every time the appli-
cation programs 120 and 130 perform a lock request, the
deadlock-graph creating section 156 records a history of lock
in the deadlock graph matrix 157. Therefore, it is possible to
not only detect a deadlock when the deadlock occurs but also
point out, even when, although there is a risk of a deadlock,
the deadlock does not occur because of timing, a place where
there is the risk of the deadlock.

According to the second embodiment, the emergency pro-
cessing section 180 rewrites the program code 190 with
respect to a deadlock risk place pointed out by the deadlock-
risk-part detecting section 160 and inserts lock and unlock for
encompassing a deadlock risk part into the program code 190.
Therefore, it is possible to prevent a deadlock.

It is possible to avoid a deadlock even if a function for
deadlock avoidance is not imparted to the application pro-
grams 120 and 130. This is because the emergency processing
section 180 rewrites a deadlock risk place in the application
programs and inserts a lock command into a deadlock risk
part. The insertion of the code is performed by the emergency
processing section 180. Therefore, it is unnecessary to rewrite
the application programs per se.

Third Embodiment

FIG. 25 is a block diagram showing the configuration of a
deadlock preventing apparatus according to a third embodi-

US 9,323,585 B2

19

ment of the present invention. As shown in FIG. 25, in the
third embodiment, the deadlock preventing apparatus
includes a probe inserting section 185 and probes 125 and 135
in addition to the components in the second embodiment.
Note that the deadlock preventing apparatus may include the
probe inserting section 185 and the probes 125 and 135 in
addition to the components in the first embodiment.

The probe inserting section 185 inserts, when the applica-
tion programs 120 and 130 or the like are disposed from the
program code 190, the probes 125 and 135 explained below
immediately before a lock command for the application pro-
grams. The probes 125 and 135 are executed immediately
before the lock command is executed and record, in the lock
address table 159 and the deadlock management table 153, a
lock target object and a thread that requests lock, a program
file in which a program requested to be locked is described,
and an address in which a lock command in the program file
is described.

An overall operation of this embodiment is explained in
detail below with reference to FIG. 26.

First, the probe inserting section 185 reads the program
code 190 for realizing the application programs 120 and 130
(step L110).

Subsequently, the probe inserting section 185 embeds the
probes 125 and 135 immediately before the lock command in
the program code 190 (step .130). Finally, the probe inserting
section 185 disposes the application programs 120 and 130
embedded with the probes 125 and 135 (step L.150).

As explained above, according to this embodiment, the
probe inserting section 185 is configured to rewrite a program
and record a lock operation. Therefore, it is possible to point
out a risk of lock and prevent lock even if the existing lock
monitor 140 is not remodeled.

EXAMPLE

An example of the present invention is explained below.

For example, a case in which lock and unlock shown in
FIG. 34 occur is considered. Concerning operation in which
the thread T, locks the lock target object V, at time t,, a state
immediately before the operation and a state immediately
after the operation are compared.

By performing the unlock and lock shown in FIG. 34, at
time t,, the lock monitor 140 records the lock management
table 155 as shown in FIG. 19 (step A150 in FIG. 4). A portion
of a solid line is a lock request thread recorded by the lock
management table 155. A dotted line is an unlocked lock
request thread. This is described for explanation. At a point of
time t,, the lock request thread is not recorded in the lock
management table 155. Referring to FIG. 34, lock is
requested in the order of the threads T,, T,, and T, with
respect to the lock target object V,. Therefore, in the lock
management table 155 shown in FIG. 19, a row of V| is
recorded in the order of T,—T,—T,—T,—T,. Underlines
indicate unlock commands and no-underline indicates lock
commands.

T, and T, that request lock first unlock and release V, (step
B150 in FIG. 8). Therefore, T, that requests lock third is a
thread that acquires lock of the object V. As explained above,
in the lock management table 155 shown in FIG. 19, threads
drawn by dotted lines are unlocked threads and deleted from
the lock management table 155.

A state of the deadlock management table 153 at time t, in
FIG. 34 is shown in FIG. 16. As indicated by step A130 and
step B130, if lock is requested, a lock target object ID is

25

35

40

45

55

20
pushed to a stack of a relevant thread ID of the deadlock
management table 153. In unlock is requested, the lock target
object ID is popped.

Attimet, inFIG. 34, T, locks V5 and T, locks V, as shown
in FIG. 16.

A state of the deadlock graph 157 at time t; in FIG. 34 is
shown in FIG. 17. In step A150, every time the lock monitor
140 describes lock information in the deadlock management
table 153, the deadlock-graph creating section 156 writes 1 in
a relevant entry of the deadlock graph matrix 157 (step E140
in FIG. 5).

At time t, in FIG. 34, T, performs lock and unlock in the
order of V,—V,—=V,—=V;—=V,—=V,. Therefore, the dead-
lock-graph creating section 156 describes a relation between
V,—V, and V,—V;, which are continuously locked, in the
deadlock graph matrix 157. That is, 1 is written in elements of
(V4 Vy)and (V,, Vy).

The thread T, already unlocked all of the objects in the
order of V,—V,—V,—V,—V,—V,. Therefore, a thread ID
of'a row of a sequence ID 1 of a deadlock graph thread table
indicating V, at the top of this order row is “ended”.

In a deadlock graph side attribute table corresponding to
(V,, V;) of the deadlock graph matrix, #2, which is a lock
command place of lock for V|, #6, which is a lock command
place of lock for V,, and the sequence ID 1 are recorded.

A state of the lock address table 159 at time t; in FIG. 34 is
shown in FIG. 20. The lock monitor 140 records, in the lock
address table 159, a lock request place (a file name and an
address) where a lock request is performed (step A140).

A state of the lock management table 155 at time t, in FIG.
34 is shown in FIG. 21. That is, an example in which, after
time t,, the thread T, requests the object V, to be locked is
shown. First, the lock monitor 140 registers, in the lock man-
agement table 155, that the thread T, requests the object V , to
be locked (step A150). According to this operation, the thread
T, is added to a row of the lock target object V,, of the lock
management table 155 shown in FIG. 21.

A state of the lock address table 159 at time t, in FIG. 34 is
shown in FIG. 27. In the lock address table 159 shown in FIG.
20, the lock monitor 140 records a file name com.nec.a.B,
which causes a lock request, and an address “19” on the file
that causes a lock request command (step G110 in FIG. 6).
The lock monitor 140 acquires this row 1D “#8”.

A state of the deadlock management table 153 at time t, in
FIG. 34 is shown in FIG. 28. The lock monitor 140 records
lock information, i.e., a lock request for the object V,, in a
lock target object stack corresponding to the thread T, of the
deadlock management table 153 (step E130 in FIG. 5). That
is, the lock monitor 140 pushes, to arow of the thread t; of the
deadlock management table 153 shown in FIG. 16, a set of the
row ID “#8” of a corresponding lock command place of the
lock address table 159 and the lock target object ID V,, (step
E130). As aresult, the deadlock management table 153 shown
in FIG. 28 is obtained.

When the deadlock management table 153 is changed, the
deadlock-graph creating section 156 records 1 in (V,, V,,) of
the deadlock graph matrix 157 (step M140 in FIG. 10). Con-
sequently, the deadlock graph matrix 157 shown in FIG. 17 is
as shown in FIG. 29. This is because, as shown in FIG. 28, a
lock target object recorded immediately preceding the lock
target object V,, pushed to the deadlock management table
153 is V5. The deadlock graph matrix 157 in FIG. 29 has a
value same as a value of a graph shown in FIG. 30. As shown
in FI1G. 29, since athread ID T is notrecorded in the deadlock
class thread table (step M160), the deadlock-graph creating
section 156 adds a new row (a sequence 1D 2) to the deadlock
class thread table and records a pointer to the element (V;,V,,)

US 9,323,585 B2

21

of the deadlock graph matrix and the thread 1D T, (step
M180). Consequently, the deadlock class thread table shown
in FIG. 17 changes as shown in FIG. 29.

As shown in FIG. 29, the deadlock-graph creating section
156 adds, as a new row, in the deadlock graph side attribute
table corresponding to the element (V;, V,) of the deadlock
graph matrix, a sequence ID 2, a relevant entry #7 of the lock
address table 159 of V;, which is src, and a relevant entry #8
of'thelock address table 159 of'V,,, which is dest (step M190).
Consequently, the deadlock graph side attribute table shown
in FIG. 17 changes as shown in FIG. 29.

The deadlock-risk-part detecting section 160 checks, refer-
ring to the deadlock graph matrix 157, whether a closed graph
is formed. For example, a case in which the deadlock target
objectV, is selected in step 1110 in FIG. 12 is explained using
FIG. 29. The deadlock-risk-part detecting section 160
searches for the next node on the graph as V,—=V, after V,,
(step J130). As a result, as shown in FIG. 14, the deadlock-
risk-part detecting section 160 records V,, V|, and V; and an
ID of the lock target object in the deadlock detection work
area 165.

The deadlock-risk-part detecting section 160 checks that
the deadlock target object V, is present in the deadlock detec-
tion work area 165 (step J110). At this point, as shown in FIG.
14, since the deadlock target object V,, is already present in
the deadlock detection work area 165, the deadlock-risk-part
detecting section 160 discriminates that deadlock occurs and
sets V,, V,, and V; as deadlock risk areas (step J170).

The deadlock-risk-part detecting section 160 presents this
result to the administrator via the GUI170. An example of the
GUTI is shown in FIG. 31. For example, buttons for displaying
a list of lock command places recorded in the deadlock graph
side attribute table of nodes determined as deadlock risk
areas, displaying a program code of an application program
related to a lock command place, and confirming with the
administrator about possibility of program code modification
for lock prevention are arranged. That is, the administrator
determines, through the GUI 170, whether a code for dead-
lock prevention is inserted.

The emergency processing section 180 corrects the pro-
gram code 190 of a place where a risk of a deadlock is present
and disposes the program code 190 as the application pro-
grams 120 and 130 again. That is, first, the emergency pro-
cessing section 180 creates the deadlock target object V (step
K125).

The emergency processing section 180 searches through
the deadlock graph side attribute table concerning the ele-
ments (V,, V), (V,,V;),and (V;, V,) of the deadlock graph
matrix 157 determined as deadlock risk areas and obtains
rows of values (1, #1, #2), (1, #2, #6), and (2, #7, #8), respec-
tively. As sequence IDs, 1 and 2 are included. First, one of the
sequence [Ds, the emergency processing section 180 selects a
sequence 1 (step K125).

When the deadlock graph thread table shown in FIG. 29 is
referred to concerning the sequence ID 1, the top is (V,,, V).
When the deadlock graph side attribute table corresponding
to (V,, V) in FIG. 29 is referred to, a lock address table row
ID of 'V, which is src, is #1.

When the lock address table 159 shown in FIG. 27 is
referred to, a lock command place indicated by #1 is an
address hoge@3 of com.nec.a.A. Therefore, the emergency
processing section 180 finds, from the program code 190, an
unlock command corresponding a lock command in the
address hoge@?3 of com.nec.a.A (step K150) and inserts a
lock command and an unlock command for V to surround the
lock command and the unlock command (step K160).

5

10

15

20

25

30

35

40

45

50

55

60

65

22

Subsequently, when the deadlock graph thread table is
referred to concerning a sequence 2, the top is (V,, V). When
the deadlock graph side attribute table corresponding to (V,
V,) is referred to, a lock address table row ID of V5, which is
src, is #7.

When the lock address table 159 shown in FIG. 27 is
referred to, a lock command place indicated by #3 is an
address g@30 of com.nec.a.F. Therefore, the emergency pro-
cessing section 180 finds, from the program code 190, an
unlock place corresponding a lock command in the address
g@30 of com.nec.a.F (step K150) and inserts a lock com-
mand and an unlock command for V to surround the lock
command and the unlock command (step K160).

Note that an example of the program code 190 referred to
by the emergency processing section 180 is shown in FIG. 32
and an example of a code after rewriting is shown in FIG. 33.
A lock command is inserted into an address 3-5 and an unlock
command is inserted into an address 14-16 in FIG. 33.

This application claims priority based on Japanese Patent
Application No. 2011-107588 filed on May 12, 2011, the
entire disclosure of which is incorporated herein.

The present invention is explained above with reference to
the embodiments. However, the present invention is not lim-
ited to the embodiments. Various changes understandable by
those skilled in the art can be made to the configuration and
the details of the present invention within the scope of the
present invention.

A part or all of the embodiments explained above can also
be described as indicated by notes below. However, the
embodiments are not limited to the below.

(Note 1) A deadlock preventing apparatus including:

a deadlock-occurrence-position detecting section config-
ured to detect a lock command causing a deadlock on a
code of an application program; and

an emergency processing section configured to insert a new
lock command and a new unlock command to the pro-
gram code to encompass a part from a lock command
place corresponding to the lock command detected by
the deadlock-occurrence-position detecting section to
an unlock command place.

(Note 2) The deadlock preventing apparatus described in
note 1, wherein the deadlock-occurrence-position detecting
section detects, on the basis of recording information of a
state of lock by the application program, the lock command
causing the deadlock.

(Note 3) The deadlock preventing apparatus described in
note 1, further including:

a lock monitor configured to receive a lock request and an
unlock request from the application program and man-
age a state of lock;

a lock-management-table storing section for the lock
monitor to manage the state of the lock;

a deadlock-management-table storing section in which the
lock monitor records the state of the lock in order to
detect the deadlock;

a deadlock-graph-matrix storing section configured to
manage a history of the state of the lock and record a
place where the lock is performed in the application
program; and

a deadlock-graph creating section configured to create the
deadlock graph matrix referring to the deadlock man-
agement table, wherein

the deadlock-occurrence-position detecting section
detects, on the basis of the deadlock graph matrix, a
position where the deadlock is likely to occur.

US 9,323,585 B2

23

(Note 4) The deadlock preventing apparatus described in
any one of notes 1 to 3, further including a GUI for presenting
the position detected by the deadlock-occurrence-position
detecting section.

(Note 5) The deadlock preventing apparatus described in
note 3, further including a lock-address-table storing section
in which the lock monitor records a position where a lock
request is issued on the program code, wherein

the deadlock-graph creating section creates the deadlock
graph matrix referring to the deadlock management
table and the lock address table, and

the deadlock-occurrence-position detecting section
detects, on the basis of the deadlock graph matrix, like-
lihood of deadlock occurrence and a position of a lock
command on the program code likely to cause the dead-
lock.

(Note 6) The deadlock preventing apparatus described in
note 5, further including a GUI for presenting the likelihood
of the deadlock occurrence and the position of the lock com-
mand on the program code likely to cause the deadlock
detected by the deadlock-occurrence-position detecting sec-
tion.

(Note 7) The deadlock preventing apparatus described in
any one of notes 1 to 6, further including a probe inserting
section configured to embed, in the application program, a
probe for recording lock information in the deadlock man-
agement table and the lock address table when the application
program is executed.

(Note 8) The deadlock preventing apparatus described in
note 1, further including:

a deadlock-graph-matrix storing section configured to
record a history of the lock command by the application
program; and

a lock-address-table storing section configured to record a
lock command place on the program code correspond-
ing to the lock command by the application program,
wherein

the emergency processing section acquires, referring to the
lock address table, a lock command place corresponding
to the lock command causing the deadlock detected on
the basis of the deadlock graph matrix, searches through
the program code and acquires an unlock command
place corresponding to the lock command place, and
inserts a new lock command and a new unlock command
to the program code to encompass a part from the lock
command place to the unlock command place.

(Note 9) A deadlock preventing method including:

detecting a lock command causing a deadlock on a code of
an application program; and

inserting a new lock command and a new unlock command
to the program code to encompass a part from a lock
command place corresponding to the detected lock com-
mand to an unlock command place.

(Note 10) A program for causing a computer to function as:

a deadlock-occurrence-position detecting section config-
ured to detect a lock command causing a deadlock on a
code of an application program; and

an emergency processing section configured to insert a new
lock command and a new unlock command to the pro-
gram code to encompass a part from a lock command
place corresponding to the lock command detected by
the deadlock-occurrence-position detecting section to
an unlock command place.

The present invention is suitable for causing a computer to

execute processing in parallel using shared resources and in
response to a request of a client.

10

15

20

25

30

35

40

45

50

55

60

65

24

100, 101 CPU

105 Memory

110 Shared resources

120, 130 Application Programs

125, 135 Probes

140 Lock monitor

150 Log DB

153 Deadlock management table

155 Lock management table

156, 356 Deadlock-graph creating sections

157 Deadlock graph matrix

159 Lock address table

160 Deadlock-risk-part detecting section

165 Deadlock detection work area

170 GUI

180 Emergency processing section

185 Probe inserting section

190 Program code

360 Deadlock detecting section

I claim:

1. A deadlock preventing apparatus comprising:

a processor for executing an application program;

a memory in communication with the processor;

a deadlock-occurrence-position detecting section config-
ured to detect a lock command causing a deadlock on a
program code of the application program;

an emergency processing section configured to insert a new
lock command and a new unlock command to the pro-
gram code to encompass a part from a lock command
place corresponding to the lock command detected by
the deadlock-occurrence-position detecting section to
an unlock command place;

a lock monitor configured to receive a lock request and an
unlock request from the application program and man-
age a state of a lock;

a lock-management-table storing section for the lock
monitor to manage the state of the lock;

a deadlock-management-table storing section in which the
lock monitor records the state of the lock in order to
detect the deadlock;

a deadlock-graph-matrix storing section configured to
manage a history of the state of the lock and record a
place where the lock is performed in the application
program;

a lock-address-table storing section in which the lock
monitor records a position where a lock request is issued
on the program code; and

a deadlock-graph creating section configured to create the
deadlock graph matrix referring to the deadlock man-
agement table and the lock address table,

wherein
the deadlock-occurrence-position detecting section

detects, on the basis of the deadlock graph matrix,
likelihood of deadlock occurrence, a position where
the deadlock is likely to occur, and a position of the
lock command on the program code likely to cause the
deadlock.

2. The deadlock preventing apparatus according to claim 1,
wherein the deadlock-occurrence-position detecting section
detects, on the basis of recording information of a state of lock
by the application program, the lock command causing the
deadlock.

3. The deadlock preventing apparatus according to claim 1,
further comprising a GUI for presenting the position detected
by the deadlock-occurrence-position detecting section.

4. The deadlock preventing apparatus according to claim 1,
further comprising a GUI for presenting the likelihood of the

US 9,323,585 B2

25

deadlock occurrence and the position of the lock command on
the program code likely to cause the deadlock detected by the
deadlock-occurrence-position detecting section.

5. The deadlock preventing apparatus according to claim 1,
further comprising a probe inserting section configured to
embed, in the application program, a probe for recording lock
information in the deadlock management table and the lock
address table when the application program is executed.

6. The deadlock preventing apparatus according to claim 1,
wherein:

the deadlock-graph-matrix storing section is configured to

record a history of the lock command by the application
program,

the lock-address-table storing section is configured to

record the lock command place on the program code
corresponding to the lock command by the application
program, and

the emergency processing section acquires, referring to the

lock address table, the lock command place correspond-
ing to the lock command causing the deadlock detected
on the basis of the deadlock graph matrix, searches
through the program code and acquires the unlock com-
mand place corresponding to the lock command place,
and inserts the new lock command and the new unlock
command to the program code to encompass a part from
the lock command place to the unlock command place.

10

15

20

25

26

7. A deadlock preventing method comprising:

storing a program code of the application program to a
memory; and

executing, by a processor, the stored program code;

receiving a lock command of a lock on the program code of
the application program;

recording the state of the lock;

managing the state of the lock;

recording a place where the lock is performed in the appli-
cation program;

recording a position where the lock command is issued on
the program code; and

detecting, on the basis of a history of the state of the lock,
the place where the lock is performed in the application
program, and the position where the lock command is
issued on the program code, likelihood of deadlock
occurrence, a position where a deadlock is likely to
occur, and a position of the lock command on the pro-
gram code likely to cause the deadlock, wherein the
history comprises a deadlock-graph-matrix;

if the deadlock is detected, inserting a new lock command
and a new unlock command to the program code to
encompass a part from a lock command place corre-
sponding to the lock command to an unlock command
place.

